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EXECUTIVE SUMMARY

The performance of the three I.AM. demonstrators and the complementarity of the scientific knowledge
created by the I.AM. consortium depends on an successful and seamless integration of the software
components that will be created all along the project. This is the reason why integration is discussed
among the I.LAM. partners at the very start of the project. This deliverable reports on how integration
plans are going to be handled, and on the consensual agreements.

Several bilateral meetings among the academic partners and industries allowed identifying what are the
software bricks that are currently available or that are in the course of development, how are they going
to evolve, and how are they going to interact and feed each other in order to be smoothly integrated.
The first and primary concern was the simulation framework that will allow conducting high-fidelity ex-
periments without compromising the real robots’ hardware integrity. For this, Algoryx could produced
an application including the simulated dynamics of the robots used in I.AM. along with the virtual envi-
ronments relevant to the scenarios investigated. This is distributed freely among the consortium for at
least the duration of the project. Algoryx on its side justifies its choice to integrate within Unity 3D and
Unreal Engine as these have become the reference for simulations involving 3D graphics, of course, but
also deep learning, machine learning, cloud execution, and much more. This is in contrast to integrated
simulation tools popular in robotics research recently.

We also discuss experimental results with parameter identification, as well as the first integration of
mc_rtc with AGX Dynamics. This is already simulating a robot (Panda from partner Franka Emika) that
is controlled using the mc_rtc task-space quadratic program framework developed by CNRS and to be
enriched by all the partners in the course of the project. CNRS also committed to port its controller in all
the I.LAM. robots. Controllers for robots subject to impacts do not exist at the moment, yet, increasing
the speed of robot manipulators requires the introduction of contact at non-zero relative velocity. De-
veloping such controllers requires a considerable amount of software components which then need to
be integrated. Software components themselves must be chosen carefully to meet specifications, and
be validated.

Meanwhile, discussions on API development to host observers and estimators developed by TUM to
serve the purpose of closed-loop impact-aware control and to be fully integrated to mc_rtc. Moreover
integrating the mc_rtc to the planning and control techniques based on dynamical systems and machine
learning is also discussed and investigated between partners EPFL and CNRS that have long standing col-
laborations and mutual understanding. Therefore, we are very confident that the I.AM. components
plan, learn, sensing and control will be integrated at an early stage of the project. In parallel, TU/e is
developing several software to support preliminary experiments for collecting data in the TOSS scenario
(using built-in robot controller) and create knowledge that spreads and feed all the other I.AM. compo-
nents. That is models to improve (i) impact-aware sensing and observation (ii) impact-aware planning
and promote the interlink between learning and modeling, (iii) improve model-based control in all as-
pects (performance and prediction) and finally (iv) promote the interlink between robot experiments
and modeling.



1 Introduction

11 I.AM. project background

Europe is leading the market of torque-controlled robots. These robots can withstand physical inter-
action with the environment, including impacts, while providing accurate sensing and actuation capa-
bilities. 1.AM. leverages this technology and strengthens European leadership by endowing robots to
exploit intentional impacts for manipulation. 1.AM. focuses on impact aware manipulation in logistics,
a new area of application for robotics which will grow exponentially in the coming years, due to socio-
economical drivers such as booming of e-commerce and scarcity of labour. I.AM. relies on four scientific
and technological research lines that will lead to breakthroughs in modeling, sensing, learning and con-
trol of fast impacts:

1. 1.Model offers experimentally validated accurate impact models, embedded in a high fidelity sim-
ulator to predict post-impact robot states based on pre-impact conditions;

2. l.Learn provides advances in planning and learning for generating desired control parameters
based on models of uncertainties inherent to impacts;

3. L.Sense develops an impact-aware sensing technology to robustly assess velocity, force, and robot
contact state in close proximity of impact times, allowing to distinguish between expected and
unexpected events;

4. |.Control generates a framework which, in conjunction with the high fidelity models, advanced
planning, and sensing components, allows for robust execution of dynamic manipulation tasks.

This integrated paradigm, I.LAM. , brings robots to an unprecedented level of manipulation abilities. By
incorporating this new technology in existing robots, I.AM. enables shorter cycle time - estimated at
10% - for applications requiring dynamic manipulation in logistics. I.AM. will speed up the take-up and
deployment in this domain by validating its progress in three realistic scenarios: a bin-to-belt application
demonstrating object tossing (TOSS), a bin-to-bin application object fast boxing (BOX), and a depalletiz-
ing scenario demonstrating object grabbing (GRAB).

1.2 Purpose of the deliverable

Deliverable D5.1is a document summarizing (i) the software background available in the consortium at
the start of the project, (ii) an initial plan for the I.AM. software architecture (comprising, in particular,
modeling, simulation, learning, planning, sensing, control, communication, hardware aspects), and (iii)
the consortium achievements up to Mé6.

This deliverable paves the way to ensuring the reaching of milestones

e MS1 “Scenario Specification and interfacing architecture agreed” (Smart Robotics)

e MS2 “Software Policy agreed and shared repository put in place” (Algoryx) both at M12 (Dec 2020),
as well as

e M7 “Software integration and numerical testing” (Smart Robotics) at M18 (Jun 2021).

A final update of the I.AM. software integration effort and final I.AM. software architecture will be
provided in deliverable D5.8 “I.AM. Software Integration Policy”, at M36 (Dec 2022).



1.3 Intended audience

The dissemination level of D5.1is “public” (PU) - meant for members of the Consortium, including Com-
mission Services, and the general public.



2 Software background

2.1 Modeling

Regarding dynamic modeling, the coordinator TU/e brought into the consortium its experience in non-
smooth mechanics using complementary system formulation and time stepping integrators. Prior the
start of the I.AM. project, a 3D rigid body model of a falling rigid box impacting a planar surface com-
prising normal and tangential (spatial isotropic Coulomb-type) impact laws was already available. This
model was developed as a building block for visual object tracking with impact, and it is currently im-
plemented in MATLAB producing results as seen in Fig. 1. This model has direct relevance for the .LAM.
project’s validation scenario TOSS.

The partner Algoryx is also heavily involved in dynamic modeling and simulation. Since 2007, Algoryx
develops practical high-performance numerical methods and delivers commercial software implemen-
tation for nonsmooth models The latter based on the same scientific literature and modeling approach,
such as [Glo13]), as the coordinator TU/e.
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Figure 1: This is a snapshot of the existing TU/e software for visual box tracking with impacts. Com-
parison of state-of-the-art visual tracking in yellow with no impact model, against developed geometric
unscented particle filter based on impact model in blue. The plots show 3D scene with box trajectory
trace and impact surface (top left), camera view (top right), reconstruction position error (bottom left)
reconstruction orientation error (bottom right) [Jon20]



2.2 Learning

Prior to the I.AM project, EPFL has developed in [AKB19] a Dynamical systems based approach for motion
and force generation applicable for single as well as multi-arm robotic systems. The framework exploits
the instant re-planning ability of Dynamical Systems (DS) to achieve robustness to perturbation such as
sudden displacement of the object before and once contact established. While this this framework was
originally designed to make smooth contact with the object prior applying forces, as shown in Fig. 2, it
successfully achieves non-smooth contact in a fast object grabbing and lifting task with two KUKA LWR
4+ robotic arms. Thus, while leveraging robustness of DS, the developed approach can induce impact
at grabbing time. The system is coupled with learning procedures to learn the nominal dynamics to
approach the objects [MFB18] and the contact forces [Ama+20] at run time to compensate for inaccu-
racies. A ROS packages containing the software implementation (written in C++) of the framework has
been developed [Ama20], [Mir18] and it is relevant for . AM. GRAB Scenario.

|——Measured (L)
—— Measured (R)

— Desired =

25 3 35 4 45 5
time [s]

——— Measured (L)
= Measured (R)
05t |
o 1

time |8

Velocity norm [m/s]

Grasping state

o

0s 1 15 2 25 3 s 4 45 5
time 5]

o

Figure 2: DS-based motion and forces generation in contact for fast object grabbing and lifting. (a):
grabbing with impact (left) and object lifting (right). (b) illustration of end-effectors force and velocity
profiles during the task. The end-effectors move with high velocity toward the box, decelerate and
contact the box with non-zero velocity and quickly accelerate to lift the box.

In the same vein, inspired by [SFB16], we developed another DS-based motion and forces coordination
approach, where two robotic arms coordinate their motion by synchronizing with a virtual object that
converges towards the real object. This allows coordinated reach-to-grasp motion of static as well as



moving object. Moreover, the generation of grasping and manipulation forces exploits Quadratic Pro-
gramming (QP) to enforce explicitly the contact constraints, namely, unilateral normal forces, tangent
forces within friction cone, stability through moments, and complementary condition between normal
force and distance to contact. While this approach was validated on a humanoid robot, it can be easily
ported on robotic manipulators adopted within the consortium. Additionally, the emphasis put on the
robust coordination between the robotic arms is particularly important in the context of I.AM. project
as it prevents premature contact - an impact - of one robot with the object, which might result in un-
desirable change of the object’s pose just before grabbing.

Prior to and since the start the project, EPFL has been developing an anticipatory postural controller
for humanoid robots. The objective of this scheme is to allow a robot to take anticipatory actions in
the form of postural adjustments such as shifting its center of mass, taking a step in order to mitigate
the effects of an upcoming balance perturbation when it occurs. The proposed approach complements
classical feedback or reactive-based balance control approaches with a feed-forward controller to allow
proactive actions. Thus, given an encoding or previously learned model of the task to perform, in the
form of motion and/or forces, the controller predicts the induced balance perturbation and its postural
consequences on the robot. And accordingly, it can generate postural adjustments to maintain the robot
balance. This concept is being validated in simulation, but it is yet to be tested on a real robot. However,
the preliminary results suggest that the proactive behavior introduced by the anticipatory controller im-
proves the robustness of the task execution. It allows the robot to remain stable in situations where
classical balance control could not maintain the robot stability without compromising the task. Beyond
robot posture, EPFL now seeks to extend anticipatory behavior to the impedance of the robot in prepa-
ration of an impact or any other interaction with the environment. In that respect, EPFL will develop
strategies to modulate or shape the impedance of the robot according to the task at hand.

Regarding the software implementation of dynamical systems in general, EPFL has developed over the
years several packages and toolboxes to learn and test dynamical systems. For instance, DS-OPT [Fig20]
is a Matlab toolbox that includes several techniques for the estimation of Globally Asymptotically Stable
Dynamical systems from demonstrations. The DS motion generation package [LAS20], which is a ROS-
nodified version of DS motion generators. This package supports (i) analytically parametrized DS for sim-
ple motions such as linear motions, point-to-point oscillatory motions and swiping in shown in [KB19], (ii)
Non-linear DS learned from demonstrations using either the SEDS parameterization approach [KB11] or
the LPV-DS parametrization approach [FB18]. The package provides for testing a number of pre-learned
model such as curvilinear motion with different targets, non-linear, non-monotic motions used in a va-
riety of tasks e.g., sink motion, via-point motion, CShape motion. A DS-based control architecture using
such algorithms is shown in Fig. 3.
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Figure 3: The DS-based task control architecture.

2.3 Sensing

The work flow of the sensing part WP3 is described by the Collision Event Pipeline [HLA17] illustrated
in Fig. 4. For the first three steps, detection, isolation and identification, commonly a momentum-
based observer [LMO5] is used. This is already builtin in several lightweight robot controllers as pro-
prietary functionality. Another more recent approach for these steps is the observer-extended direct
method [BKH20]. For this method additional external hardware, like IMU sensors, and software for
gathering the measurements from these sensors is needed. Both parts are available as early stage pro-
totypes, whereas the software part is written in standalone Matlab functions, which can be used by
project participants. For the other steps, mathematical methods and concepts are available, e.g., for
classification [GOH15], and for reaction [Had+08]. However, these parts are not available within I.LAM.
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Figure 4: The depicted Collision Event Pipeline is used in this project as a framework for the collision
handling and given in [HLA17].

2.4 Control

The control approach that will be promoted in I.AM. consists in formulating robotic objectives in terms of
goals to achieve optimally in the task-space as an quadratic program (QP), an approach which is brought
in into the I.LAM. consortium by the partner CNRS [Bou+19]. Each task is defined as a sensory error func-
tion to be reduced as best as possible under constraints such as joint limits and undesired foreseeable
collisions. If it happens that not all tasks can be realized perfectly; they are said to be conflicting. In this
case, acompromise between tasks is needed. It is therefore necessary to define a hierarchy of priorities.
There are three main approaches: (i) soft hierarchy is achieved by weighting tasks giving them relative
importance; (ii) strict hierarchy will resolve for the highest priority task first. Then, the next, lower prior-
ity task is resolved within what remains feasible without compromising any performance of the higher
priority task, etc. Finally, (iii) combines both approaches, and is the most common in practice.

The idea behind this whole-body controller is that a task is a function f of sensory inputs e, any sensor
can be considered, f(e) is to be minimized under a set of state constraints, equalities and inequality.
The framework aims at building complex controllers from simple task templates that form instructions,
and a hierarchical finite-state machine for branching. According to CNRS partner’s view, each task is a
“motion primitive”.

Figure 5 illustrates the main components of the task specification and control architecture used by
CNRS for the control of several robots as complex as humanoids. This framework architecture, called
mc_rtc, is already implemented on several other robots such as those of the SoftBank Robotics family
such as Pepper and Nao, the HRP humanoid family including HRP-2, HRP-2Kai, HRP-4, and more recently
the HRP-5P, in addition to Sawyer, KuKa arms. Recently, in the context of I.AM. , mc_rtc was successfully
ported to control the Panda robot.

The Partner CNRS committed to make all the robots of I.AM. - Panda, UR and others if any - powered
by mc_rtc. The overall architecture is structured into three main components:

1. Low-level and high-performance C++ libraries meant for experts who are familiar with both robotics
and the intrinsics of these libraries;

2. A unified controller interface mc_rtc: the control framework, meant to facilitate the develop-
ment of controllers and the integration of new robots, simulation software and robot hardware
interfaces;
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Figure 5: The mc_rtc control architecture framework.

3. Simulation/control interfaces which are simple “glue-layers” between the control framework and
a simulation software, such as vRep or Choreonoid, or robot-hardware interface. Later, in section 4
we discuss its extension to AGX Dynamics.

Themc_rtc framework is written in C++, but allows writing any robot controller in either C++ or Python.
The low-level libraries are mainly concerned with the mathematical and numerical aspects of the control,
i.e., computing all the required matrix and vector quantities correctly in a timely manner, and setting up
and solving optimization problems. The mc_rtc framework brings simpler interfaces, simpler semantics
-which are task-centric instead of model-centric- and a range of tools to support the development of
new controllers, such as new mission instances. This framework allows experts and non-experts to build
complex and maintainable robotic applications.

Recently mc_rtc was successfully used in achieving the EU H2020 COMANOID project demonstrator.
In this project a humanoid robot was demonstrated in-situ at the Saint-Nazaire aircraft site, where it
achieved complex operations inside a scale 1:1 airplane mockup [Khe+19].

Within I.AM. so far, recent results [SWK18; WK19] were used to extend the task-space control approach
to impact-awareness. Indeed, instead of explicitly designing a dedicated controller to handle task-aware
impacts, we integrate impact and continuous dynamic models as well as constraints consistently as part
of our mc_rtc controller. The core idea is to perform a one-step-ahead prediction in every control cycle
based on the impact model. That is to say, given imminent, intended or expected impact, we assume
that it will happen in the next iteration. As a result, the controller becomes aware of impact-induced
velocity jumps and restricts the robot motion to meet impact with (possibly maximum) velocities that
can handle the upcoming impact safely, i.e., within the pre-defined hardware resilience and task-dictated
acceptable bounds. By this approach, the resulting robot motion is robust to uncertainties in impact time
and location.



2.5 Simulation

Simulation requires numerous components to be orchestrated. There are computational kernels for
controllers, physical motion, graphics rendering, communication and virtual sensors. And these are
synchronized by a simulation master. Others components include configuration files, authoring tools,
and data storage.

There are available solutions for all these components at different level of maturity, some free, some
not. There is however nothing yet for impact-aware control, the raison d’étre of the [.AM. project. This
also applies computational dynamics libraries - the physics engine as some say - with regards to impact
laws.

There are also choices for physics simulation but as each library takes a different path from models,
numerical methods, heuristics and approximations, as well as software implementation towards a sat-
isfied end-users who get to focus on their own problems. There is a broad spectrum in terms of speed,
fidelity, accuracy, and stability. AGX Dynamics is not unique in with regards to the list of features needed
in the present project, namely multibody dynamics and frictional contacts the very minimum. However,
nearly all libraries which handle contacts and friction at high speed use iterative solvers which leave very
large residual error. AGX is based on a direct factorization and pivoting solver.

However, considering what was written in Sections 2.1 and 2.4, it is closer to the spirit of this project,
and is expected to deliver in speed, fidelity (good models), and accuracy. This is because it is a syn-
thesis [LacO7] of discrete time variational methods [MWO1], nonsmooth mechanics including impacts
[Glo13; LAGO09], and specially tailored high performance linear algebra [LLS12]. Being designed for fixed
step, and with special attention to all nonsmooth aspects, it couples perfectly with robot controllers
which also operate at fixed step.

It is robust as it has been used in thousands of training simulators with scenarios that can last for
weeks at a time in the maritime sector for instance. It is now being adopted by engineers moving away
from Finite Element Method (FEM) packages as these do not deliver the speed needed, and the error
difference between the results are small enough.

As for assembling of all the components into a system simulation, there are several integrated solutions
which have been used extensively and successfully in the past by various members of the consortium,
and have received good reviews in the robotics community. These include

e Gazebo [Fou20], which has an end-of-life set to 2025,
e Ignition [Rob20b] (its successor),

e CoppeliaSim [Rob20a], and

e Choreonoid [Nak20],

among many more. These solutions support connections to control algorithms via a variety of commu-
nication protocols, and have a large number of features. They also provide multibody dynamics in the
end-user application via several different libraries through a plugin API, and basic rendering and helper
tools for building simple virtual environments. Configuration management is handled via the Scene De-
scription Format (SDF)! which is fairly limited in scope.

But there are practical issues with all of them for the present project. The plugin mechanisms involve a
“meta” API for each components, viz, sensors, vision, and physics, as this connects existing library to GUI
and simulation elements. At least for physics simulation, these APIs are woefully inadequate as no effort

'http://sdformat.org/spec
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was made to make an ontology which maps to all existing libraries. This resulted in the lowest common
denominator. For AGX Dynamics, that would lead to eliminating the possibility of simulating flexible
links, conveyor belts, drivelines, and probably suction cups. Extending this API leads to branching the
original software. After that point, the possibility of merging back is slim, which is not good for dissem-
ination of the results of this project. In addition, the labor cost involved in integrating AGX Dynamics
is high, not relevant to this project, and presents little commercial reward. AGX has a programmatic
interface accessible from python, and declarative one in the works. This should be sufficient to support
simple applications for the time being.

Outside of the aforementioned integrated tools, “game engine” companies such as Epic Games and
Unity 3D have been so successful that they are releasing their simulation environment for free, with full
source code in the case of Epic, only charging royalties for published end products. The momentum here
is far bigger than what the Open Robotics Foundation can deliver on the simulation front and render-
ing front. There are big investments?, direct support from Nvidia for robotics applications®*, and with
connections to Alphabet for deep learning algorithms, entry into cloud computing. From January 2019
until June 2020 alone, a search on the combined databases of Ex Libris discovery yielded more than 700
articles combined for robotics research using either Unity 3D or Unreal. Around 500 for the first, around
200 for the second. The same keywords give 250 hits for “gazebo”, and only one for CoppeliaSim.

And the consequence of all this investment and popularity is the emergence of a fast growing ecosystem
in which one can mix and match components. And these “game engine” companies actively encourage
this. As concrete and direct example, Epic Games awarded two 100,000$ grants to Algoryx to write
a plugin as part of their MegaGrant program [Gam20]. A great deal of what is needed for robotics
simulation is already there with respect to virtual sensors, connection with ROS, interfaces with ML and
Al, batch job management on GPGPU clusters, and of course, several libraries for physics simulation.
And all this without defining meta APIs which can be very wrong.

In conclusion, the Unity 3D and Unreal platforms are rapidly gaining adoption by the robotics commu-
nity. From Algoryx’ perspective, these two have been the obvious target for some time already. From
I.AM. 's perspective, this is a path to broad dissemination of the results.

The integration of AGX Dynamics with Unity 3D and Unreal Engine is funded by customers.

Taken together, what this means is that the majority of the effort from Algoryx within I.AM. is to improve
on models - the suction cup for instance -, fidelity, speed, and connectivity.

2.6 Human-Robot interaction and safety

Relevant to task T5.5 and deliverable D5.6 “Human safety in impact-aware manipulation”, the TUM part-
ner has developed the Safe Motion Unit (SMU)[Had+12] concept, which is currently implemented as a
ROS node, making it possible to use, e.g., Gazebo for simulations.

The SMU ROS node requires the kinematic and dynamic parameter of the used robot. Points of interest
and their impact on safety are specified prior to execution. Furthermore, the position of a human in the
vicinity of the robot needs to be monitored and published, so that the SMU node can subscribe to this
ROS topic. As output, the SMU node provides as a ROS service a safe velocity limit for the most critical
point of interest as well as the end-effector of the robot. This safe velocity limit is determined based on
the inputs and a human biomechanics database included in the ROS node (at present, the database is
currently not completed for all human body parts).

https://www.unrealengine.com/en-US/blog/grishin-robotics-aims-to-accelerate-the-future-with-epic-games-unreal
*https://docs.nvidia.com/isaac/isaac_sim/plugins/robot_builder/index.html, jun 2019
“https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html May 29, 2020


https://www.unrealengine.com/en-US/blog/grishin-robotics-aims-to-accelerate-the-future-with-epic-games-unreal-engine
https://docs.nvidia.com/isaac/isaac_sim/plugins/robot_builder/index.html 
https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html

As such, the SMU with ROS is compatible with any simulation environment which supports virtual sen-
sors to publish the position of a simulated human. Simulations are used for testing but not directly for
design.

3 Integration policy and plan

For a coherent software integration plan, the consortium started from the I.AM. work package and task
interrelation and interdependencies diagram, shown in Fig. 6.
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) details ' GRAB Scenario 3 r__ﬂ
WP1 WP2 WP3 WP4 WP5

Figure 6: I.AM. work package and task interrelation and interdependencies diagram. There is almost a
one-to-one correspondence between the five challenges and corresponding project objectives, namely,
I.Model, I.Learn, I.Sense, I.Control, and |.AM.

From this diagram, we have identified and listed all the bricks of software that are planed in each task or
a group of tasks, as defined in each WP. Consequently, we thought about gathering, when this is possible,
these bricks into a software frameworks. The latter indicate the flow of information or knowledge, from
which a global integration architecture is possible.

3.1 Integration architecture

The diagram in Fig. 6 is mapped into the integration architecture sketched in Fig. 7.

The modeling and knowledge generated from 1.Model consists of mainly standalone software and code
that will be integrated on-demand in almost all the existing software bricks/modules/frameworks of
I.AM.For example, contact models can serve the purpose of mc_rtc in rewriting the impact-aware tasks
and also in AGX to improve the simulation of contacts. Data knowledge can also be used in l.Learn
and planning. This is the reasons why I.Model covers all modules. The understanding of how impacts
propagates in the structure be used in the observers and the control.

The integration of mc_rtc with the results from WP2 is straightforward. The dynamical system planning
and part of the control strategy will be integrated as a dedicated module that specify the task objective
and even the task automatically. EPFL partner already started integrating task-space constrained QP
control with the dynamical system (DS) control approach that will pave the way for impact-aware learn-
ing and control integration. From the control part mc_rtc can easily be enhanced using Tasks and
the mc_rtc: : £sm (branching) from the software developed by EPFL partner. This is work is currently
starting.
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Figure 7: LAM. integration architecture.

In order for mc_rtc to be enriched with observers developed by TUM partner, CNRS partner already
prepared an observer pipeline as follows. An observer is an on-line estimation of given parameters by
means of models and eventually some of the existing sensors’ data and/or some of the existing observers
or estimators. Hence, an observer runs a sequence of methods to update the observed parameters
from available sensors and previous observer results. An update could be optional in few cases; e.g., log
ground truth from a simulator that is not used in the controller. An observer is configured through the
controller configuration (default at mc_rtc level) as follows:

# List of observers to run

RunObserver: [Encoder, BodySensor, Kinematiclnertial]
# List of observers used to update realRobots() from
UpdateObservers: [Encoder, Kinematiclnertial]

For implementing an observer the following steps are to be made:
1. Write an observer plugin for mc_rtc;
2. Inherits from mc_observers: :0bserver;

3. Implements the following methods®

void reset(MCController); //Reset the observer’'s state
bool run(MCController); //Run the estimation but no update
void updateRobot(MCController, Robots); //Update robots

The integration of mc_rtc with the new simulation environment developed for the I.AM. project will
follow the same philosophy as our current integration with v-Rep, Gazebo and Choreonoid simulation
framework. The latter already embed the AGX Dynamics library for simulating the physics. In section 4,
we highlight the choices made for integrating mc_rtc and AGX.

Coupling between mc_rtc and a simulation library or a robot can be done via a number of protocols,
e.g., UDP, ROS [Rob20d] or OpenRTM [AIS20]. The UDP version is working with AGX, and the other
protocols are in development for this library. This type of message passing architecture makes it very

*More details in: https://jrl-umi3218.github.io/mc_rtc/tutorials/recipes/observers.html
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easy to integrate and requires little configuration. The whole-body controller mc_rtc already powered
the control of a large number of robots and has a well defined policy. In fact, mc_rtc assumes the low-
level control of each robot to be well tuned and optimized, therefore it acts mainly at task space level.
However, shall the low-level control be open to parameters tuning (gains, change of the control law...)
mc_rtc can benefit from such an opening. For instance, past work prior to I.AM. allowed to optimize
gains of the low-level PD controller as part of the QP control framework by considering the PD gains as
decision variables.

Models of robots used within the consortium are available as URDF [Rob20c] files, and the same can
be done for conveyor belts, although these need additional parameterization.

Algoryx is developing a declarative format using YAML® which is both human readable and writable by
contrast with XML. What this declarative format is good for is to collect what the simulation needs to
start, without having to write a script, and without having to make a GUI. A proposal has been submitted
to ITEA3 for further development and integration or interoperability with the Universal Scene Descrip-
tion (USD)” originally developed by Pixar. USD is rapidly evolving to support all aspects of simulations
including deep learning and cloud execution. The momentum behind this effort is significant because of
the coupling with Unity and Unreal, and goes far beyond the SDF. This should have significant outreach.

Indeed, the current configuration is not too pleasing (see code below).
python AGX_URDF_Environment.py \

-urdf_file ./urdf_-models/panda_suctioncup.urdf \

-urdf_package ./urdf_models/franka_ros-kinetic -devel_suctioncup \
-robot_name panda_tool -pos -0.25,3.45,0.55 -rpy 0,-0,2.35 \

-urdf_file ./urdf_-models/panda_suctioncup.urdf \

-urdf_package ./urdf_models/franka_ros-kinetic -devel_suctioncup \
-robot_name panda_2 -pos 0,-0.45,0.45 -rpy 0,-0,-0.75 \

-urdf_file ./urdf_-models/box.urdf -pos 0.3,1.85,0.860898 -rpy 0,-0,0 \
-urdf_file ./urdf_models/box.urdf -pos -0.552,1.1,0.860898 -rpy 0,-0,0 \
-urdf_file ./urdf_-models/box.urdf -pos 0.3,0.35,0.860898 -rpy 0,-0,0 \
-urdf_file ./urdf_models/box.urdf -pos -0.552,2.6,0.860898 -rpy 0,-0,0 \

-conveyor demo -conveyor_speed 0.3 \
-pickable_objects box -suction_cup true --timeStep 0.005 \

agx=$!

# make sure the server has time to start
sleep 4

MCUDPControl -s > mclog 2>&1 &

mc=$"!

wait $agx

kill -15 $mc

Yet the results are promising: Fig. 10 shows the result of a tossing motion realized by using CNRS whole-
body controller where physics was simulated employing AGX physics library. In Fig. 10, there are three
impacts following the simulated TOSS of parcel on a conveyor belt, one with four simultaneous contacts.
The time step was 1/200 seconds, here so these collisions happen in rapid succession.

6yaml .org
"https://graphics.pixar.com/usd/docs/index.html
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Figure 8: Snapshots of a simulation with AGX Dynamics and CNRS whole-body controller mc_rtc.

3.2 Software development policy

The mc_rtc control framework, a task-space optimization universal robot controller and all its bricks and
documentation is Open Source licensed under the BSD 2-Clause terms®. The core C++ libraries with a
heavy focus on performance that achieve the most fundamental operations (spatial vector algebra, rigid
body dynamics and setting up and solving QP) have already been released’. However the QP solver
implementations that are used (QLD and LSSOL) are released by 3rd-parties under different licenses
(public domain and commercial respectively). This software is currently maintained with a dedicated
support for all the I.AM. partners.

As for Algoryx, AGX Dynamics is proprietary but licenses have been issued to all members of the con-
sortium and for the entire duration of the project, with extensions as deemed useful. The code written
within the project that is not related to internal components - such as code for the friction model - will
be licensed under the BSD 2-Clause as mc_rtc.

At present, the code for connecting mc_rtc and AGX Dynamics and the simple application are stored
in a git archive host on Algoryx’ gitlab. This archive is both readable and writable for all members of the
consortium.

3.3 Communication with robots

Communication with robots is abstracted away from the programmer in the mc_rtc framework. There-
fore, to switch from the simulation to an actual robot, the user simply needs to change the interface
that is used to initiate and run the controller. The communication of the robot can use different inter-
faces depending on the robotic platform, e.g., using the same UDP protocol as with the simulation or a
dedicated application using the vendor library™.

®https://opensource.org/licenses/BSD-2-Clause
“https://jrl-umi3218.github.io/mc_rtc/
©prototype interface for libfranka and mc_rtc https://github.com/gergondet/mc_franka
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4 What has been achieved

4.1 Impact model parameter identification software

The TU/e has developed various software routines, currently in MATLAB, to automatically identify fric-
tion laws parameters directly from box-conveyor impact data. This includes normal and tangential coef-
ficient of restitutions, as well as dry friction coefficients. The software makes use of the simulation code
implementing the box-plane impact model described as background in the Section 2.1, which is able to
simulate the impact and possible “tumbling” of a box-shaped parcel on a conveyor belt. This is rele-
vant in particular for I.AM. ’s validation scenario TOSS. Robot, parcel, and gripper motions are recorded
via a mocap system at 360FPS. It was found that parcel-conveyor impact duration lasts between two
or three samples, and TU/e has obtained a preliminary confirmation that nonsmooth mechanics for-
mulation is a valid approximation for the parcel-conveyor forward dynamics. In the meantime, Algoryx
has augmented the impact model of their simulation library to include tangential restitution which the
TU/e found necessary to match the experimental results collected via the mocap system and this has
been validated against existing theory [Glo13]. The data collected from Vanderlande and TU/e will give
Algoryx (as well as other physics engine companies) the opportunity of validating everything contact
related in the AGX Dynamics library and make sure it matches the experiments within tight margins for
the applications of interest.

The impact dataset is stored in the Hierarchical Data Format 5 (HDF5) [Gro19]. This format is binary
and hierarchical. It supports many different types of data, and since annotations can be stored with
the data, the files are self-descriptive, as illustrated in Fig. 9. The HDF5 impact dataset be used in the
coming months also for the validation of AGX Dynamics in the TOSS scenario. The impact database will
be available starting from end of September 2020 as part of . AM. project’s deliverable D1.1, and it will be
kept up-to-date with new impact/release measurements related to the TOSS, BOX and GRAB validation
scenarios used within LAM.

Algoryx and TU/e, with support of Vanderlande and Smart Robotics, are now turning their attention to
the modeling, parameter identification, and simulation of the suction cups and conveyor belts and the
development of related software routines for the TOSS and BOX scenarios. As for simulation of suction
cups needed for these scenarios, there appears to be nothing for direct use in this context. There are
articles [Ani+15; CWH19] on the topic aimed controls, but other than one article on analytic models
[Liu+06] or the finite element method for aimed at design optimization simulations [NHO9], there is no
indication that this is yet available. At present time, suction is simulated in AGX Dynamics by making
contact points adhesive after contacts are detected.

4.2 Interface between AGX dynamics and CNRS’s whole-body control software

At the start of the project, Algoryx planned to use Choreonoid [Nak20] as a simulation framework be-
cause it nominally supports all the required components, namely, AGX Dynamics, mc_rtc, and URDF
robot models. Since Chorenoid was developed by the National Institute of Advanced Industrial Science
and Technology (AIST) Japan, with whom the CNRS has established an international collaborative labora-
tory, a joint research unit, the CNRS-AIST Joint Robotics Laboratory (JRL), also a partner of I.AM, this was
the perfect candidate. It appears now that the main developer, Dr Nakaoka, created a start-up with only
one employee and already several engagements with Japanese industries. After several discussions with
Dr Nakaoka and the CNRS and AIST researchers, it was deemed too risky to engage the I.AM. consortium
with Chorenoid as our simulation framework. The software is open source, but without support, there
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Figure 9: On the top row is the experimental setup available on TU/e campus, in Vanderlande’s Inno-
vation Lab, making use of a mocap system (Optitrack 17W cameras, 360FPS). The setup uses reflective
markers on the box, conveyor, robot, and gripper (top) and the visualizer for comparing recorded data
with nonsmooth model simulations center, and the bellows suction cup right. On the bottom row is a
screenshot of an HDF5 viewer showing the structure of the file and the type of data it can contain.

is no future. Therefore, both Algoryx and CNRS agreed to move forward with a different plan leading
to a simple prototype application with all the aforementioned capabilities, and a virtual environment
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needed for the TOSS scenario. A URDF parser was implemented for Algoryx’ own, humble visualization
program, and as soon as the Panda robot could be simulated, simple conveyor belt and suction cup
models were added. The performance at 500Hz was sufficient to keep synchronization with the CNRS
mc_rtc. This is soon to be distributed to the consortium partners. Support for ROS communication as
needed by Smart Robotics is in development and nearly finished.

AGX Simulation mc_rtc
Pre-simulation
[ Read control and apply it to motors Read sensors ]
Iteration Simulation Iteration
N [ Run a simulation step Run controller ] N
Post-simulation )
[ Read sensors and send them on the network Write output ]

Algoryx @

Figure 10: Integration scheme between mc_rtc and AGX Dynamics

Figure 10 shows an overview of the current integration between mc_rtc and AGX dynamics, or, more
accurately, the agxViewer application which runs the mc_rtc UDP server which is configured to imple-
ment the commands defined in the mc_rtc messages. This links to the mc_rtc client which implements
the tasks. This is simple indeed but can go quite far yet. The protocol was established by CNRS to
communicate with robots that do not have sufficiently performant hardware to compute the control in
real-time. This is provided in the mc_udp package". This integration scheme shall evolve as AGX config-
uration format materializes. Currently, the simulation’s and controller’s initial state must be specified in
a shell script as described above.

"https://github. com/jrl-umi3218/mc_udp
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Conclusion

This deliverable D5.1 provides a preliminary overview of existing software and methods within the con-
sortium that will be used to create the I.AM. software. It also provides insight and describes the software
integration policy and plan, with a description of the achieved results within the first six months of the
project in this context. We believe that within only six months, the objectives of the deliverables are
much beyond what was expected (rough scheme).

There is still three years and six months this project duration until M48 (that is December 2023); this
deliverable will be thoroughly and continuously updated to be wrapped in its finale version by M36
(that is December 2022) into the deliverable D5.8 “I.AM. software integration policy (update D5.1)” as
well as in the internal reports of the milestones MS1 “Scenarios specification and interfacing architecture
agreed” and MS2 “Software policy agreed and shared repository put in place” both planned at M12 (that
is December 2020).

All'in all, all the I.AM. partners are aware of the importance of an early effort toward integration and
that integration is the matter of all.
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