Impact-Aware Manipulation by Dexterous Robot Control and Learning in

Dynamic Semi-Structured Logistic Environments

\}

.AM.

Scenario 1 (TOSS) report

Dissemination level Public (PU)
Work package WP5
Deliverable number D5.3
Version v1.0
Submission date 30-12-2022
Due date 31-12-2022

m This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No. 871899

www.i-am-project.eu

Authors
Name Organisation Email
Saeed ABDOLSHAH TUM saeed.abdolshah@tum.de
Micheal BOMBILE EPFL michael.bombile @epfl.ch
Teun BOSCH Smart Robotics tbosch@smart-robotics.nl
Maarten JONGENEEL TU/e m.j.jongeneel@tue.nl
Stijn de LOOIJER Vanderlande stijn.de.looijer@vanderlande.com
Fredrik NORDFELDTH Algoryx fredrik.nordfeldth@algoryx.com
Alexander OLIVA TU/e a.a.oliva@tue.nl
Jari van STEEN TU/e j.j.v.steen@tue.nl
Ahmed ZERMANE CNRS ahmed.zermane@lirmm.fr
Sjouke de ZWART Smart Robotics sdezwart@smart-robotics.nl

Peer reviewers

Reviewer name Date
Reviewer 1 Claude LACOURSIERE 26-11-2022
Reviewer 2 Alessandro MELONE 29-11-2022
Reviewer 3 Alessandro SACCON 8-12-2022
Reviewer 4 Harshit KHURANA 12-12-2022
Reviewer 5 Jos DEN OUDEN 30-12-2022
Reviewer 6 Abderrahmane KHEDDAR 30-12-2022

Legal disclaimer

The information and views set out in this deliverable are those of the author(s) and do not necessarily
reflect the official opinion of the European Union. The information in this document is provided “as is”,
and no guarantee or warranty is given that the information is fit for any specific purpose. Neither the
European Union institutions and bodies nor any person acting on their behalf may be held responsible
for the use which may be made of the information contained therein. The I.AM. Consortium members
shall have no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability which is
mandatory due to applicable law. Copyright © I.AM. Consortium, 2020.

Executive summary

Robotic automation is mainly applied in the loading, unloading, and infeed processes of a logistic sys-
tem, where human workers still have a central role given their speed and reliability compared to current
available robotic solutions. In fact, currently available robot solutions are often higher in cycle time and
less reliable than a human, which is preventing logistic companies from further automating their pro-
cesses. To fill this gap, a transition from pick-and-place towards pick-and-toss can help to speed up the
process and thereby improve the productivity of the robot solution.

To make the robots pick-and-toss instead of pick-and-place, impact-aware tossing was developed. Var-
ious components are developed and combined to achieve impact-aware tossing. Several models have
been developed to predict the behaviour of an item being tossed. These models include the behaviour
of an item being held by a suction cup, the release dynamics when it is being tossed as well as the be-
haviour of the item when impact with the conveyor occurs. To make use of the models, it is essential
to know the inertial parameters of the object that the robot is going to handle. Therefore, a payload
identification method was explored to determine the object inertial parameters online. Although addi-
tional sensing units such as vision system, IMU, or even a prior knowledge about object may facilitate
the payload identification process, we decided to stick to the application of proprioceptive sensors and
avoid using exteroceptive sensors that may not be in the scope of the project use cases. A planner was
developed that can find a release state when a desired rest pose of the item is given (see also deliverable
D2.1). To plan a motion of the robot towards this release state, a dynamical system based controller was
developed. This robot-independent second-order task-space dynamical system (DS) has been integrated
into the mc,rtc[framework (a quadratic programming (QP) task-space based control framework). These
components are developed, tested, and validated in simulation. This is done by doing real-world exper-
iments and then parameterize the simulation models to be able to repeat the real-world behavior, and
then be able to use the validated simulation environment with the same controller that is running with
the real robot.

The item-conveyor models, the planner, and the controller have been integrated to do real-world test-
ing on a setup that resembles those used in the current industry. Testing is done on both a Universal
Robotics UR10 robot as well as a Franka Emika robot. The benchmark results show the potential of the
I.AM. technology, especially for the traysorter scenario and a bin-to-belt system. The sensitivity analysis
shows that item parameters do not have to be estimated perfectly in order to toss accurately within a
desired window. The results show that by tossing items a 10% decrease in cycle time can be achieved
when comparing on the same experimental setup. The tossing scenario is, however, not yet ready in
its current state to be used in the industry. This is because in the current tossing algorithm, the item
parameters are assumed to be known such that optimization for a toss can be done offline. In the indus-
try, the item variety is large and it is most often not known what item is being handled next. Therefore,
parameter identification and tossing optimization will have to be performed online. However, the report
shows by means of real experiments that tossing can indeed decrease the cycle time of robotic systems
in logistics by at least 10%, showing the potential gain it can generate on the current logistics industry.

"https://jrl-umi3218.github.io/mc_rtc/

https://jrl-umi3218.github.io/mc_rtc/

TABLE OF CONTENTS
0 _Introductionl. 7
[11 1.LAM. project background|. 7
[1.2 Purpose of the deliverable] 8
(.3 Intendedaudiencel 8
2 _Businessvalue 9
[3 _Developed components for tossing| L Lo 1
[3.1 Tossing Robot Architecture| "
[3.2 Dynamic Holding, Release, and ImpactModels| 1
[3.21 Box-suctioncup holding| 12
[3.2.2 Suction cup release dynamics| 14
[3.2.3 Object-conveyor impact model parameters| 14
[3.3 Payload estimation e e 15
[3.4 Tossingplanner| 16
[3.5 Tossing controllers| 17
[3.5.1 DS-based tossing motion generation| 17
[3.5.2 Robot control through QP robot control (mc_rtc)| 19
[8.6 Simulation environment] e 19
[3.6.1 Simulated components| 20
[8.6.2 Simulation softwareandmodels| o 20
[B.6.3 Simulationrunfimel 21
[3.6.4 Validation procedure e 21
[3.6.5 Expected user experiencel e 21
[B.6.6 Release of GLUE] o i it e e 21
|4 Performancetesting) 22
[41 Performance evaluation (KPIs)| 22
.. 25
[4.21 TOSSalgorithm| e 25
[4.2.2 Placealgorithm| 25
23 Metrics] o o e 25
[4.3 Testsetup| e 26
[4.4 Tossingtestresults| 28
[4.5 Sensitivity analysis e 32
[4.6 Usingthe URTO| e 32
[4.7 Evaluation e 33
B _Conclusionl e 34
6 REFERENCES]. o o o e it e e e e e 35
A Infeedscenariotossing 36

[B__Results of the sensitivity analysis for tossing]|

ABBREVIATIONS
co Confidential
EC European Commission
SIR Smart Item Picking Robot
WP Work Package
pph packages per hour

1 Introduction

1.1 L.AM. project background

Europe is leading the market of torque-controlled robots. These robots are compliant and can withstand
physical interaction with the environment, including impacts, while providing accurate sensing and ac-
tuation capabilities. I.AM. leverages this technology and strengthens European leadership by endowing
robots to exploit intentional impacts for manipulation. I.AM. focuses on impact-aware manipulation in
logistics, a new area of application for robotics that will grow exponentially in the coming years, due to
socio-economical drivers such as the booming of e-commerce and scarcity of labor. I.AM. relies on four
scientific and technological research lines that will lead to breakthroughs in modeling, sensing, learning
and control of fast impacts:

1. I.Model offers experimentally validated accurate impact models, embedded in a high fidelity sim-
ulator to predict post-impact robot states based on pre-impact conditions;

2. l.Learn provides advances in planning and learning for generating desired control parameters
based on models of uncertainties inherent to impacts;

3. L.Sense develops an impact-aware sensing technology to robustly assess velocity, force, and robot
contact state in proximity of impact times, allowing distinguishing between expected and unex-
pected events;

4. |.Control generates a framework that, in conjunction with the realistic models, advanced planning,
and sensing components, allows for robust execution of dynamic manipulation tasks.

This integrated paradigm, I.AM., brings robots to an unprecedented level of manipulation abilities. By
incorporating this new technology in existing robots, I.AM. enables shorter cycle time (10%) for appli-
cations requiring dynamic manipulation in logistics. . AM. will speed up the take-up and deployment in
this domain by validating its progress in three realistic scenarios:

e a bin-to-belt application demonstrating object tossing (TOSS scenario);
e a bin-to-bin application demonstrating object fast boxing (BOX scenario);
e acase de-palletizing scenario demonstrating object grabbing (GRAB scenario).

These scenarios are further abbreviated as the TOSS, BOX, and GRAB scenario.

In this report, we mainly evaluate the development and results of the TOSS scenario. In Section[2] we
descibe first the value the TOSS scenario potentially has for various applications in the current industry
and what development the current industry is missing. Once the gap in the current technology is out-
lined, we discuss the components that are developed within the I. AM. framework with respect to the
TOSS scenario in Section|[3] In Section[3.6] the setup of the simulations is described as well as the results
of tossing in simulation. Experiments were done on real robots, which is shown in Section[4] where also
performance testing and results are shown. Finally, in Section[5/conclusions are drawn for the results of
the TOSS scenario.

1.2 Purpose of the deliverable

This report aims at providing insight on the demonstration of the TOSS scenario as well as an overview
of the components developed by the I.AM. consortium over the course of the project. Also, it contains
the results of the integration of these components occurred in the period 12-16 September 2022 during
a project integration week. The I.AM. partners TU/e, CNRS, EPFL, Smart Robotics, Vanderlande attended
physically at the Vanderlande Innovation Lab on TU/e campus in Eindhoven, while the partners TUM and
Algoryx supported remotely. The report contains furthermore the corresponding performance testing
related to the results of the TOSS scenario.

Figure 1: TU/e, CNRS, EPFL and Smart Robotics researchers working on the integration of components
for TOSS scenario.

1.3 Intended audience

The dissemination level of this report is ‘public’ (PU) - meant for members of the Consortium (including
Commission Services) and the general public.

2 Business value

The booming e-commerce market, the increased labor scarcity and the need for more future-proof work-
ing environments are driving the demand for robotic automation in logistics. In the past, robots have
already proven their value in automating highly repetitive tasks (e.g. in automotive or manufacturing).
Nowadays robot solutions are also entering the logistic world. Here they have to deal with less struc-
tured environments and a high variation in the products to handle.

Robotic automation is mainly applied in the loading, unloading and infeed processes of a logistic system,
where human workers still have a central role given their speed and reliability compared to current
available robotic solutions. In fact, currently available robot solutions are often slower and less reliable
than a human, which is preventing logistic companies from further automating their processes. To fill
this gap, a transition from pick-and-place towards pick-and-toss can help to speed up the process and
thereby improve the productivity of the robot solution.

Two use cases are identified for which tossing technology can be utilized to speed up the robotic process;
infeed on a crossorter infeed (see Figure and direct infeed on a moving traysorter (see Figure.

Figure 2: Manual infeed stations that merge onto a crossorter

The crossorter in Figure 2 is one of Vanderlande’s parcel loop sorters. It is made of decks with a moving
conveyor that is used to sort the parcel towards the right end destination. Parcels are loaded onto an
infeed conveyor, from where they are merged onto the crossorter. The parcels should be oriented with
their short edge leading and under a 30°angle.

The traysorter shown in Figure [3 is another loop sorter in the portfolio of Vanderlande which can be
used for parcel sortation. In this case, Parcels are directly loaded onto a traysorter moving at 1.5 m/s.
The parcels should be positioned in a window of the traysorter, but the orientation is not strict: only the
barcode should not be facing down so it can be read by barcode scanners in a later stage.

The crossorter infeed case will be used to explain the potential value of pick-and-toss compared to pick-
and-place solutions. A reference system is defined that represents a mid-size European parcel customer
with the following characteristics:

System capacity 10.000 pph,

Capacity human operator 1.500 pph,

7 infeed workstations,

Hourly rate €40/hr,

Operation 8h/day, 6 days/week, 52 weeks/year.
We assume a robot induct station with the following costs:

e Sales to customer (STC) price €420.000,
e Operational cost €42.000/year.

The operational costs cover the maintenance of the robotic system and license fees.

As benchmark, we take a state-of-the-art industrial robotic induct system that can reach 1500 picks per
hour. Important to note is that those systems make use of an industrial robot (e.g., ABB or Fanuc). Those
robots can reach much higher accelerations than the cobots (Universal Robots’ or Franka Emika’s) that
are used in the I.AM. project. The industrial robots need to be fenced off to secure human safety, so for
research purposes a collaborative robot is easier to work with. It is assumed that the cycle time decrease
that we can achieve on a collaborative robot can be transferred to an industrial robot.

So let’s consider the benchmark system with 1500 picks per hour. We assume that this system can
handle the complete parcel flow that passes the induct station. With the above mentioned parameters,
this results in a return of investment of 8 years. In the I.AM project we aim to increase the throughput
of pick and place operations by 10%. So applying I.AM technology to the benchmark system with 1500
picks per hour, will lead to a throughput of 1650 picks per hour. This decreases the return of investment
significantly to 6.4 years.

Figure 3: Manual traysorter infeed stations

10

3 Developed components for tossing

In this section, one can find the various components that are developed in order to achieve impact-
aware tossing. At first, the architecture is discussed, explaining what components are in the system and
how they relate to each other. Secondly, the components are discussed. These components are (a) the
dynamic models used for predicting tossing results, (b) sensing of the items (payload estimation), (c) the
tossing planner, and (d) the controller tasked to execute the planned tossing motion. Finally, we discuss
the simulation that was used to verify the tossing in a simulated environment.

3.1 Tossing Robot Architecture

In this section, the different components of the developed TOSS framework are described. In Figure[4} a
graphical overview of this framework is described, showing the core components and their interconnec-
tions with other components. Starting on the top left, the real-life setup is shown, which describes the
physical setup, consisting of one or multiple robots with a suction gripper, objects to be handled, and
the tossing environment, including for example the conveyor belt on which the objects will be tossed.
This physical setup is modeled in a virtual world model. This includes models of the robot and the
attached suction gripper with a flexible suction cup model, as well as models of the different objects
being tossed and the environment where the objects land after tossing. To validate this virtual world
model, a model parameter validation procedure is performed by comparing tosses on the real setup
with identical tosses in the virtual world. More information on the models used in the virtual world
model and the parameter validation procedure can be found in Section while the software aspect
using AGX dynamics is explained in Section (3.6

Using this validated virtual world model, a planner is formulated, which currently uses a fully data-driven
approach: for a given object, several numerical tossing simulations are performed within a compact
set of initial conditions to determine the optimal tossing release state for a given desired rest pose of
the object on the environment (e.g., a traysorter deck or a conveyor belt). Details of this planner are
given in Section[3.4]and more thoroughly in the deliverable D2.1. Because in an industrial scenario the
inertia properties of the object are generally unknown, a payload estimation procedure is designed to
determine the object’s center of mass, weight, and inertia tensor, so that a suitable tossing release
pose obtained using the planner can be retrieved, even when the object is unknown. Next to payload
estimation, the shape and geometry of the item must also be known for accurate tossing, however, item
shape/geometry estimation (by means of a vision system) is already existing in the current industry, so
no focus for development has been done within the I.AM. project.

When the item parameters (such as mass, dimension, and inertia) are known, it can be used together
with the desired rest pose of the item as input for the planner to find a desired release state. A Quadratic
Programming based controller, for short QP robot controller, is designed to steer the robot in such a
way that the desired release state (pose and velocity) is reached. This controller can be used both for
tossing on the real setup, as well as in the virtual world model, allowing for safe preliminary testing and
controller optimization without requiring from the start the real setup. The details of the developed QP
controller can be found in Section[3.5

3.2 Dynamic Holding, Release, and Impact Models

This section explains the model used for the tossing scenario. An accurate model is needed to predict
the behaviour of a toss. Firstly, the suction cup holding a box as well as the release dynamics of the said

Model parameter Virtual world model

Real-life setup validation (AGX dynamics)

QP controller

Planner
(mc_rtc)

Payload estimation

Figure 4: Diagram showing the correlation between different components of the tossing framework

suction cup are described. This is done in Section and respectively. In Section|[3.2.3|the impact
and friction dynamics of the box and the conveyor are detailed.

3.2.1 Box-suction cup holding

The bellows suction cup is a ubiquitous gripper for robotic package picking and placement in logistics. Its
compliance allows a robotic manipulator to handle a wide range of packages, whether them being rigid,
semi-rigid, or deformable. When dealing with tossing motions that will be generated autonomously by
a motion planner, the compliance of the suction cup must be taken into account in order to properly
compute the trajectories that will lead to have package landing in the desired location. To forecast the
deformation of the suction cup during the holding phase, its dynamic behaviour needs to be modeled,
and the parameters describing such a model identified.

In this study, the dynamics of the bellow suction cup gripper are modeled using a model-based approach.
The suction cup is assumed to be a massless 6D force-torque coupled elastic element. Based on the
surveyed literature, to model a spring wrench that has geometrical meaning, the elastic element has
been derived from a spring potential energy function.

_02 _ 02
z 0 T 0
2 2
570,7 ;870,7 e
0.4 0.4
0 1 2 3 4 >0 7 9 10 0 1 2 3 4 6 7 8 9 10
Time [s] Time [s]
1 1 .
F F —
= 1 = 1
g2 g2 —
3 - 3 —
[+ L | 2 3 4 9. 5 7 ¢ 0 1 2 3 4 9. 26 ¥ 9 10
Time [s] Time [s]
() ()
a1t -1 by ‘\ [| A 4!‘
| | | "1\] | ——
,‘\ N s | 4] Ml . N
\‘m‘“‘uw (N1 A AR v 2
3 M\"M‘ ‘ \\ “[i | \‘M;“!“ 3}
VIl V | I\ | | |
= " “\“ VY M“‘H"\! Enn =
= | | | (| T n \ Eolsst = —0% |
. T 2 3. ==
v = @ Egrav
& & -
1 1t
14 | 9 i | !
\ ‘l \ : A KA M) l\, ,,A’f I
o | AN AN A ol
(1)rln | 2 3 4 5 6 7 9 10 0 1 2 3 4 5 6 9 10
Time [s] Time [s]
(b) (d) (f)

Figure 5: Numerical implementation of the bellow suction cup dynamics model: (a) tool-arm and plate’s
final configuration after 10[s] of numerical simulation in the damped case; (b) VIOPlate and Tool-Arm
equipped with reflective passive markers used to record real data for the identification procedure; CoM
position and orientation (c) and energy (d) over time in the undamped case; CoM position and orienta-
tion (e) and energy (f) over time in the damped case.

To validate the proposed model and its physical consistency, numerical simulations are carried out and
the system’s energy is evaluated. As reported in Figure[5, starting from the initial tool-arm configuration
(Figure[5(a)) and keeping it in that fixed configuration, the suction cup model holding a known payload
subjected to gravity is made, causing the payload to bounce indefinitely over time. FigureE(c) shows the
position and orientation of the plate’s Center of Mass, while its Potential, Kinetic, Potential elastic and
total energy is shown in Figure E(d). When also a 6D damping term is modeled, the system dampens
its velocity reaching a rest pose, as can be seen from Figure E(e) while the system’s energy is shown in
FigureE(f). As expected, the total energy is constant in the lossless case, while decreases in the presence
of dissipation.

Currently, the stiffness and damping parameters of a real bellow suction cup are being identified us-
ing OptiTrack measurements (see Figure b)) and an object of known inertial parameters that can be
opportunely modified (Variable Inertia Object) to fully excite the system’s dynamics. The identification
procedure takes place in two phases: a static one in which only the stiffness of the spring is identified
and a dynamic one in which the damping term is determined. Despite the low signal-to-noise ratio (the
displacement of the suction cup is quite small ([0, 1.5][mm]) compared to the OptiTrack’s noise level
of ~ 0.2[mm)]), the preliminary results are promising for experimentally validating the bellow suction
cup dynamics model during the holding phase, which will subsequently allow us, once the model will
be integrated into the planner, to automatically generate tossing trajectories from the desired impact
position of the package.

3.2.2 Suction cup release dynamics

During the release of the object from the suction cup, the suction cup exerts forces on the object that
determine its trajectory, and therefore its rest pose. Therefore, a dynamical model should be created
that allows to predict the trajectory of an arbitrary (known) object. A first step towards this model is
presented in [1], and a typical release experiment is shown in Figure Once the trigger is given to
release the object from the vacuum gripper, pressurized air flows into the suction cup, which makes the
suction cup elongate until its full length is reached. In [], the release dynamics of a plastic plate (with
different attached masses) is studied in a one-dimensional setting. A set of experiments is executed
where the motion of the objects and the suction cup are recorded via a motion capture system. A
supervised learning approach is proposed that shows remarkable prediction capabilities when evaluated
on a test set, despite not having any direct information about the suction cup state, see Figure
Achieving an accurate prediction of the 1D force gives good hope that the same approach can be used
in the 6D case, which is left for future work. The reader is referred to [1] for further details.

/g 100} Exp. mean
E Simulation
g & < — — — 30 on exp.
50 1 1 1 1 1 1
R 0 100 120

:
B

20 40 60 80 100 120 140

Time (ms)
(a) (b)

Figure 6: Snapshots of a slow motion recorded video during a typical vertical dropping experiment (a),
and one of the results of the learned models (b). Source: [1]

3.2.3 Object-conveyor impact model parameters

In Algoryx, the impact and friction dynamics are described using Newton'’s impact law and Coulomb
friction law, respectively. Besides information about the mass, inertia, and geometry of the object, these
laws require an estimation of so-called contact parameters: the coefficient of restitution (e)) and the
coefficient of friction (1). To obtain an estimation of these parameters, experiments can be executed
where different boxes are tossed on a conveyor. From these experiments, we use the pre-impact state
(pose and velocity) of the box as input for simulations, together with certain values of the parameter
set {u, en}. The post-impact velocity as result of the simulations is then compared to the measured
post-impact velocity, resulting in the costs shown in Figure[7. These costs show a clear optimum, which
provides us with the parameter values for 1+ and e used in the simulation environment. These results
will be presented in a paper for which a pre-print can be found online [2].

14

0.5 0.5

M EN

Figure 7: Resulting costs. The resulting costs show a clear optimum for the coefficient of restitution and
coefficient of friction.

3.3 Payload estimation

In the tossing scenario, to make sure that the object lands on its specific position it is essential to know
the inertial parameters of the object that the robot is going to handle. Therefore, a payload identification
method was explored to determine the object inertial parameters online. Although additional sensing
units such as vision system, IMU, or even prior knowledge about the object may facilitate the payload
identification process, we decided to stick to the application of proprioceptive sensors and avoid using
exteroceptive sensors that may not be in the scope of the project use cases.

Let’s consider the standard rigid body dynamics model of a robot with n joints. Assuming the robot has
grasped an object, we need to estimate the external torques (caused by the object) as well as position,
velocity and acceleration of joints to calculate the inertia matrix (The bottom part of Figure (8] (Online
identification)). To remove the measurement error and offsets a novel calibration method is used such
that its offline data is exploited in online identification approach. we also proposed to design a filter
function that is similar to the filtering characteristic of the momentum observer and applied it to all
measurements. This generates a set of timely aligned measurements and improves the performance of
payload identification.

None of the payload’s inertial parameters can be estimated, as long as the robot trajectory does not
excite them. An appropriate choice of the robot motion has a significant influence on the accuracy of
the identification process. For the use cases in the I.AM. project, we may even need to execute another
task (e.g. moving to the releasing point for the tossing scenario), while the identification approach is
in process. Therefore, an efficient, but simple trajectory (8 superposed sinusoidal functions) for the
payload identification is used and potentially it can be integrated with a task motion. Further details
and results of this work can be found in the published paper at 2022 IEEE International Conference on
Robotics and Automation (ICRA) [3].

O'\é')"‘f‘ q. q — q, (}q T [Novel calibration]
! ' - : inertial parameters of

RLS [virtual calibration object

Uncalibrated calibrated
-| Robot Model f--~"""71 """~~~ Robot Model Fe i
’é}> 5

Calibrated inertial
Jra=d parameters of payload

[Online identification] i[Offline calibration }

Figure 8: An overview of the proposed payload identification method.

3.4 Tossing planner

In a robotic tossing scenario, the object’s trajectory flying in space, impacting, bouncing, tumbling, slid-
ing, and finally landing at a certain rest pose depends on the robot’s end-effector pose and end-effector
velocity at the moment of release, hereafter referred to as end-effector release conﬁguratio

Our goal is to select an effective end-effector configuration for releasing the object given a specific target
rest orientation. The term effective here means that we are aiming at a release configuration that is
robust with respect to slight variations in the initial conditions (the robot likely fails to drop off the object
at the exact release pose with the exact release velocity) and model inaccuracies, and hence ensures the
object is landing with the desired surface in contact in a pre-defined user-desired target area.

2
2 T
,. g 2
Random Sampling of Release —, | Realistic Box-Impact —, | Data-set Creation based on
Configurations (with C++) — | Simulations (with AGX) ¥~ | Success Criterion (with matlab)
J ’_ CSV-File
Parameterized Gradient ¢ GMM Learning based on BIC
Optimization (with matlab) N (with python sklearn)
- (] i
| optimal release .-,2,
7 configuration B

Figure 9: I.AM tossing planner pipeline.

21t depends also on the dynamical properties of the object and the environment.

16

The approach as shown in Figure [9] requires an inverse impact model. The impact dynamics can be
accurately simulated forward in time. Due to the highly non-smooth dynamical impact effects (such as
friction of two materials against each other) it is however almost impossible to infer an inverse impact
model analytically.

Therefore we are utilizing learning techniques that can circumvent this problem. In order to acquire a
data set for the given robot manipulator comprising release configurations and corresponding object rest
states, we propose to simulate the object’s flight and landing trajectories, thereby including also highly
non-smooth dynamical impact effects. The output of the planner is an optimal end-effector release state
consisting of a pose and velocity, which are collectively denoted as A*.

3.5 Tossing controllers

In order to reach the desired optimal end-effector release configuration A*, we need to plan (and ex-
ecute with the robot) a tossing motion. The tossing task being mainly defined in task-space imposes
motion constraints to both translation and rotation that must be satisfied for its successful execution.
Moreover, the planning problem is also constrained by the robot’s dynamics and its hardware features.
Adopting motion generation inspired by the method for softly catching an object in flight [4] allows
meeting A* with the end-effector as a via-point. Thus, to address both the tossing motion generation
and its execution, a second-ordelﬁtask-space dynamical system (DS) has been created, which has been
integrated into the mc_rtc framework [5]. The mc_rtc controller can be used to control both real-life and
simulated robots. Particularly, utilizing the newly developed AGX interface, simulations for tossing the
object can be executed with the DS-based mc_rtc controller and AGX dynamics. Further details on the
DS-based mc_rtc tossing controller are provided next.

Constraint-aware tossing DS Robot
mc_rtc
Tossing robot V
Planner Constraint controller
: — g
Nominal Ds | 10SSing Modulation
Modulation

Parameters
i r

’ q.9

Figure 10: Overview of the constraint-aware tossing DS and its integration within the system.

3.5.1 DS-based tossing motion generation

The desired tossing release state, from a control perspective, represents an intermediate or transitory
state defined in terms of release position and velocity that must be satisfied simultaneously at the re-
lease instant. The robot can only pass through and not settle to such a state. Besides reaching the
desired release state, an additional requirement for the robot is to avoid task space collision (mainly
with the supporting table) when executing the desired tossing motion.

To address the tossing motion generation problem with the aforementioned requirements, unlike clas-
sical approaches based on motion planning, we adopted a solution based on dynamical systems (DS).

3Second-order DS here refers to a DS that outputs desired acceleration for each position and velocity state of the robot.

17

Thus, the desired tossing motion is encoded into a time-invariant and autonomous differential equation
that maps any robot’s state to its desired evolution. Such an approach offers fast and time-independent
replanning abilities and robustness to perturbations.

More precisely, to fulfill the requirements of the tossing task, we proposed a modulated DS approach
where state-dependent modulation functions locally shape the motion of the robot such that it passes
through the desired release states. An overview of the proposed DS is shown in Figurg10. The main
idea is to generate motion towards an attractor located near the desired release position, and when in
its vicinity (within the modulation region), reshape the robot’s motion to also align it with the desired
velocity while moving towards the desired release position. Thus, the proposed method simplifies the
motion generation to reach a 2N-dimensional release state problem into an (N + 1)-dimensional at-
traction problem. This is achieved by projecting the motion, thanks to a task-related orthonormal basis,
into a space where the problem reduces to following a moving attractor in one dimension (along the de-
sired velocity) and to convergence to fixed attractors in the remaining orthogonal dimensions, as shown
in [6] in the case of dual-arm tossing.

Moreover, to satisfy the task-space constraints of the tossing task in both translation and rotation,
we proposed to generate the motion in joint-space, where regardless of the desired release state in
task-space, the corresponding release state belongs to R2Ndof | with Ny is the number of degrees-of-
freedom of the robot. This allows a straightforward application of the proposed DS approach. Further-
more, to ensure that the motion generated by the DS satisfies joint limits in position, velocity, accel-
eration, and task-space limits (collision avoidance), we introduced into the DS the awareness of such
constraints through motion modulation. Thus, using the robot’s kinematics, we transformed and em-
bedded the joint limit and task space polytopic constraints into motion modulation matrices for the DS.
Figure[l1illustrates ten simulated tossing trajectories generated using the proposed DS.

1
— '.'quf 5
£ o5 |—x(t) y
N rd ? &
-.-‘%l']r lease 4
— X ¢ b o
0 “Arelease . % =
Zobstacle & 2 § .
-1 = 2
~ 1
o .
Y [m) 0 0
11 X [m]
(a)

Figure 11: Example of simulated ten trajectories generated using the proposed constraint-aware joint-
space tossing DS: (a) 3D trajectories (green), initial positions (black) and release position (red). The
yellow plan represents the task-space obstacle that needs to be avoided; (b) corresponding joint velocity
norms. The norm of the desired tossing release velocity is in red, whereas the velocity norms of the
motions generated by the DS are in other colors. At the release times (green vertical lines), the norms
of the joint velocity vectors equal the norm of the desired joint space release velocity.

18

3.5.2 Robot control through QP robot control (mc_rtc)

To control the robots, both in the simulation environment as well as in real-life, the mc_rtc [5] control
framework is used. The latter comprises a set of tools among which a task-space controller formulated
as a quadratic programming (QP), solving a QP problem at all times separated by a finite time-step to
find the optimal control inputs at that time. The QP control approach allows to execute tasks as well as
possible using a weighted cost function for the different objectives, while adhering to constraints, such
as joint limit constraints and (self-)collision avoidance constraints. Coupling of the mc_rtc framework
with the Algoryx physics engine, by means of the GLUE framework developed during the I.AM. project,
is further detailed in the I.AM. project deliverable D5.8.

The control framework makes use of the finite state machine (FSM) feature in mc_rtc to execute the
entire toss cycle, which is divided in different states. Through the first states, the box is grabbed from
the tote and brought to a position above the tote. Once this is finished, the tossing state is entered. In
this state, the output of the planner (*), which contains the desired end-effector pose and velocity at
the moment of release, is transformed to a desired release joint position and velocity through inverse
kinematics. This desired joint state at the moment of release is used in the DS-based tossing motion
generation algorithm, further detailed in Section @, to determine the desired joint velocity at every
time-step. When this desired velocity is tracked, the motion followed by the robot is given by the desired
path shown in Figure[11] Hence, the QP in the tossing state enforces a task, minimizing the error between
the desired and the measured joint velocity. When the release pose is nearly reached, suction of the
gripper is disabled and the package is tossed, after which the robots moves back to a position over the
tote.

One thing to note is that the inverse kinematics procedure used within the control framework will not al-
ways have a unique joint state corresponding to the desired Cartesian end effector state. This can cause
uncertainty, as minor changes to the desired end effector release state can result in entirely different
joint release states, and hence trajectories to reach the desired final pose. To minimize this unwanted
effect, the position and velocity of a single joint is given as additional input in the inverse kinematics pro-
cedure, which leaves only a finite amount of joint states corresponding to the desired end effector pose.
Of these finite poses, the infeasible states, resulting in self collisions or joint limit violations are filtered
out. However, for certain poses, multiple feasible solutions are still found, resulting in the described
unwanted effect to be present to a smaller extent.

3.6 Simulation environment

Having a virtual representation of the world gives a safe, scalable and distributable test environment for
robotics. When it comes to manipulating objects with robots, it is clearly an advantage if the robot is
accessible to anyone, and the scenarios are configurable so that synthetic data of a large test domain,
spanning any imaginable scenario, can be generated for validation and development of control algo-
rithms. For the virtual environment to be trusted, all the included components must be validated. By
doing real-world experiments and then parameterize the simulation models to be able to repeat the
real-world behavior, and then be able to use the validated simulation environment with the same con-
troller that is running with the real robot. To reach a good level of accuracy the simulation needs to also
include the dynamics of flexible degrees of freedom both for joints and suction cups at the least. For a
control system developer, a simulated toss needs to generate realistic sensor data including typical noise
from measurement devices to have any value.

To be able to record real-world behavior, advanced 3D motion capture systems have been set up at TU/e

19

Algoryx

Figure 12: Snapshot from the simulation environment

for the TOSS and BOX scenarios, as shown in Figure[14]
Within the consortium we have developed a concept for enabling validation and high fidelity real-time
simulation, including flexible suction grippers, with a control system in the loop.

3.6.1 Simulated components

For the simulated Franka Emika robot, illustrated to the left in Figure[12, we like to repeat the toss op-
eration in simulation. To achieve this, first of all the dynamics of the robot itself need to perform in an
accurate manner. This requires the inertia of each link, the joint motor acceleration and stiffness, and
any end effector to be parameterized. Say that the robot is validated, and it can repeat the dynamics
of the real robot with a desired level of accuracy, then it is possible to use the simulated robot to also
validate the suction gripper by observing and recording the suction gripper behavior. Also, the interac-
tion between the suction gripper and a picked object and the interaction between a tossed object and
the spot where it lands must be parameterized to be able to have a virtual toss environment that can
replace the real world when validating and developing a toss controller.

3.6.2 Simulation software and models

AGX Dynamicsﬂ hereafter AGX, has been used to simulate the dynamics of the TOSS scenario. AGX gives
accurate force calculations and enables physically based parameters to be tuned from extremely soft to
super stiff joints and contacts. An impact will propagate through the simulated mechanical structure
instantaneously. A suction gripper model has been implemented in the AGX toolkit, enabling quick
and easy configuration of suction gripper dynamics. The simulation models are defined in a declarative
format, BRICK, being developed parallel to the I.AM. project. This enables composition and hierarchical
modeling of reusable components with YAML based text declarations, with references to control signals.
Instead of having to convert other formats, like URDF which is widely used within robotics, it is possible

“https://www.algoryx.com/agx-dynamics/

20

to extend the existing files with string references. Deliverable D5.8 provides further details about these
aspects.

3.6.3 Simulation runtime

A concept has been developed and a primary runtime is implemented. The runtime is a thin Python
layer with the working name GLUE, for instantiating the simulation environment and for doing parameter
validation. Given a BRICK model the runtime initializes a synchronous communication over a, soon-to-be
open source, communication framework CLICK. CLICK is also developed in parallel with I.AM. to enable
BRICK robot communication. CLICK is implemented in C++ and can be integrated with a client of any
controller framework. Within another project where Algoryx is involved, e.g., the company ABB has
integrated CLICK with their virtual controller, which also enabled Algoryx to reuse the CLICK integration
within yet another project. Deliverable D5.8 provides further details also about CLICK.

3.6.4 Validation procedure

A collaboration between the partners of I.AM has started the development of a Python framework for
validating simulation components. The idea of the framework is to start from real-world data in a struc-
tured and documented format, and using this be able to both initialize simulations in any recorded
configuration and start the simulation from that state. The simulation trajectory is validated through
its comparison with the following real-world trajectory. The framework is used for offline parameter
validation, where the parameters are validated outside the framework, as explained in The full
concept of GLUE includes online validation of the simulation parameters with a control system in the
loop.

3.6.5 Expected user experience

A control system developer implementing a QP controller using the mc_rtc framework with access to
a URDF file describing a robot of interest should be able to augment the robot with flexible joints and
a suction gripper using the BRICK modeling format. 3D torque/force sensors can be added to any joint,
and it is possible to attach an IMU sensor anywhere on the robot.

By authoring a simulation environment with validated simulation models, i.e., box, conveyor etc., using
BRICK, the control system can synchronously control the simulated robot if implemented using a con-
troller framework with CLICK client integration. The joint signal inputs can either be position, velocity or
torque, and each joint does automatically have position, velocity and torque sensors. Boolean signals,
like the one for enabling or disabling the vacuum, can be declared generically. Simulation model param-
eters are possible to validate using a different runtime, which optimize a set of parameters by trying to
match simulation trajectories/behavior with real world trajectories/behavior. The parameter validation
runtime support quick reloading of the simulation environment in reconfigurable initial states to enable
instantiation from variable recorded real world states and search for optimal parameters in a predefined
parameter space.

3.6.6 Release of GLUE

The goal is to release the interface for GLUE with the I.AM. project deliverable D1.2 "Physics Engine API
for Learning, Planning, Sensing, and Control”, which is due in June 2023. The parts of GLUE will step by
step become available as open source. For example BRICK is currently being re-engineered in C++, to

21

enable integration with native runtime environments, and a public BRICK release is not being considered
before that work is done. Further details about GLUE, BRICK, and CLICK can be found in the meantime
in the I.AM. project deliverable D5.8.

4 Performance testing

With all the components developed, testing can be done to evaluate the performance of the tossing algo-
rithm, this will then be compared to the pick-and-place scenario. First, we will discuss how performance
can be measured to compare tossing to picking and placing. Second, the test plan will be discussed,
followed by the test setup used for performance testing. Lastly, the test results will be shown together
with a sensitivity analysis. This section details the test plan used to compare the tossing algorithm with
classical placement of items.

4.1 Performance evaluation (KPlIs)

In this section, we discuss how performance in the current industry is measured and how it will be used
to evaluate the performance of the TOSS scenario. In the current industry, performance is measured
by means of key performance indicators (KPIs). Key performance indicators are measurable values that
indicate how well a system is performing, which makes comparison between systems possible through
these measurable values. First, we will discuss the key performance indicators that are used in the
current industry. In the current industry, the following KPIs are measured:

e Throughput [items/hour] (The number of items the system is able to successfully process in 60
minutes)

e Average cycle time [s] (average time it takes from one pick to the next pick)

e Average pick and place time [s] (average time it takes from pick to place)

¢ Mean time between failures [hours] (average time between system breakdowns)

e Mean time to recovery [s] (time required to repair a system and restore it to full functionality)

e Retry rate/pickability [items] (average amount of picks needed before an item is successfully
picked)

e Accuracy [%] (The input of items compared to the output)

e Quality [%] (the percentage of items that did not receive noticeable (upon inspection) damage
from being handled by the system.)

The throughput is defined as the average amount of items the system is able to handle in 60 minutes.
This includes waiting times such as switches of totes and waiting for errors to recover. The average cycle
time is defined as the time it takes from pick to pick. More elaborate, the cycle starts once an item is
picked and ends when the next item is picked from the tote, thus completing one complete cycle. The
average pick and place time is the time it takes from the moment the robot has picked an item till it has
placed the item at the designated target. The difference, therefore, between the average cycle time and
the average pick-and-place time, is the time it takes for the robot to move to the next pick, in Figure[13

22

one can see a diagram visualizing the cycle time and pick and place time. The mean time between fail-
ures describes the average time between system breakdowns and is usually calculated by dividing the
total active time by the number of operator interventions. The higher the mean time between failures
the better, as this means no operator interventions are needed and the robot can continue happy flow.
If the robot does go into an error state, the mean time to recovery will indicate how long it will take for
the robot to recover from the error before it can continue its happy flow. The retry rate (also referred to
as pickability in industry) describes how well the robot is able to perform a pick. Sometimes, the robot
has trouble picking an item and it has to try multiple times before it is able to successfully grab an item,
the retry rate gives an indication of how many times the robot needs to pick on average before it has an
item attached. The system should always pick/place the correct number of items. The accuracy value is
the percentage of item transfers that result in the correct number of items being picked from the source
container as well as the correct number of items being placed at the target. Situations that could prevent
this from happening are e.g: losing items while picking or placing, double picks, and accidental drop-ins.
No visible and/or structural damage to the items should occur when being handled by the system. The
quality value is the percentage of items that did not receive noticeable (upon inspection) damage from
being handled by the system.

Start robot

Y

Move to pick ‘

/‘ position ‘

Move to place
position

Figure 13: Diagram of the cycle time and pick and place time. Following the black arrows, a full cycle is
done when the same state is reached where you started (e.g from one pick to the next pick). The red
arrows indicate the pick and place time. The blue arrow indicates the initial step necessary to enter the
cycle.

Using all these performance indicators and looking at the various combinations, the performance of the
system can be determined. For this project, a goal of a 10 % speed-up in cycle time is set for the TOSS
scenario. Therefore, the average cycle time and average pick and place time are good key performance
indicators to monitor if and where a speed up might take place. We will not use the throughput as a KPI

23

for the TOSS scenario. The throughput includes the cycle time as well as tote waiting time and waiting
for errors, which the TOSS scenario does not aim to improve. Because the tossing scenario only concerns
the placement of items, we will not concern ourselves with KPIs that describe the picking phase such as
the retry rate. We will not use the mean time between failure as a key performance indicator, as well as
the mean time to recovery, as these are also KPIs the TOSS scenario does not aim to improve (and also
require extensive endurance testing). However, during testing, it will be monitored if tossing does lead to
more operator interventions compared to the traditional placement of items. When placing items from
a tote on a belt there is a chance that the item will be lost during the motions of the robot. To monitor
if this will occur more often during tossing, the accuracy will be monitored. Within the accuracy, we can
also monitor if items do end up where we want them to (and for example do not tumble or land outside
the target). The quality is also something that we do not aim to improve within the |.AM. project, but
also for this KPI we will monitor during testing if the items suffer visible damage while being handled. In
summary, the KPIs that will be used to compare the performance of tossing with placing are:

e Average cycle time [s]
e Average pick and place time [s]
e Accuracy [%]

Lastly, some monitoring needs to be done to test for the applications described in Section |2, for some
of these applications it is important that, for example, the item is placed at a certain angle or that the
barcode of the item does not face down. These extra requirements per application are shown in table[4.1]

Characteristics of the different TOSS scenarios

Infeed Traysorter
Application Bin-to-Belt Bin-to-Window
Conveyor speed Upto 1.5 m/s Upto 1.5 m/s
Tumbling allowed Allowed (not desired) Allowed (not desired)
Window size z = 1300mm, x = 400mm,
y = 2100mm y = 400mm
or
x = 400mm,
y = 600mm
Stance requirement Barcode not down Barcode up
Rotation requirement Short edge leading w.rt. | Rotation arbitrary
crossorter, 30° 4+ 5°
Mass range < 4kg < 4kg

The requirements together with the presented KPIs will be monitored during testing as shown in the
testplans in Section|4.2| In Section|4.4, the results for these KPIs and requirements for the TOSS scenario
can be found.

24

4.2 Test plan

In this section, the test plan to analyze the performance of the tossing algorithm in an industrial-like
scenario is described. First, the tossing algorithm is detailed, thereafter the place algorithm is explained
and lastly the metrics by which the test executions are measured are discussed.

4.21 TOSS algorithm

For the tossing algorithm, the planner, controller, the simulation environment, and the object-conveyor
impact model parameters described in Section are used. As the I.AM. project is not focusing on
speeding up the picking process, it was decided to use a simple pick algorithm. In the industry, picking
is done by using computer vision to detect items and determine grasp poses. Now, items are placed
at a known position and picked with a predetermined grasp pose in the middle of the item. The items
that will be picked and tossed are boxes as 80% of the items handled in the Vanderlande industry are
boxes. In this test plan, the boxes will be of uniform weight, because the used planner (see Section|[3.4)
assumes items of uniform weight. It is assumed that the properties of the box, listed as box 5 in the
item archiveE are known. First, the planner is used to determine the release pose and velocity of
the box given the data of simulated N randomized tosses with the box conveyor model in combination
with a desired rest position fulfilling the characteristics of table[4.1 Given the release configuration, the
controller in combination with the dynamical system is used to generate the motion after picking up the
box.

4.2.2 Place algorithm

In order to compare the KPIs of the tossing algorithm with picking and placing, a pick and place algo-
rithm also has to be made. To make a fair comparison, the same robot will be used with the same pick
position and target, where the robot is allowed to have the same motion limits as the toss algorithm.
The place algorithm uses the same motions for moving to the pick position and picking the item as the
toss algorithm. The only difference is the place motion as opposed to the toss motion. The place motion
has been created using a cubic spline that the robot will follow while staying within the motion limits.

4.2.3 Metrics

As listed above, the tossing and placement algorithms have been compared on the average cycle time,
average pick and place time, and accuracy. Below, it is explained in more detail how each KPI is evalu-
ated. The item handling consists of several states. The state diagrams for both tossing and placing are
illustrated in Figure[13

The average cycle time for both tossing and placing is the time it takes to go from moving to the pick
position of the first box to moving to the pick position of the second box. The average pick and place
time is the time it takes to go from the state of picking up the item to the state of placing the item. The
time and state switches are stored using the logging framework of the QP robot controller mc,rtcﬂ
The accuracy of each placement and toss is evaluated as the percentage of items that are successfully
placed or tossed. The properties that determine a successful accomplishment of this task are dependent
on our industry scenario. The two scenarios taken into account are the traysorter and infeed scenarios
described in Table[4.1]

*http://impact-aware-robotics-database.tue.nl/objects
®https://jrl-umi3218.github.io/mc_rtc/tutorials/usage/logging.html

25

http://impact-aware-robotics-database.tue.nl/objects
https://jrl-umi3218.github.io/mc_rtc/tutorials/usage/logging.html

For the traysorter scenario an item is successfully handled if:
e The rest position of the handled item is on the conveyor in a defined window of 2100 x 1300 mm.
e The yaw of the orientation of the rest position of the box is within the 5 degree error margin.
For the Infeed scenario an item is successfully handled if:

e The rest position of the box is inside the traysorter, equal to a window of 400 x 600 mm.

4.3 Test setup

To show the potential of the TOSS scenario, experiments need to be done with a setup that resembles
what is used in the current industry. For this, a setup was made that consists of a robot located on a
table with a compartment to pick items from. A conveyor belt is added at the back side of the table
such that the robot can pick from the totes and then either toss or place items on the conveyor belt at
distances that resemble the ones in the current industry. The test setup can be seen in Figure14] while
the schematic can be found in Figure [15.

Figure 14: The test setup used for the validation of the TOSS scenario with the workspace of the UR on
the left, the belt in the middle and the work space of the Franka Emika robot on the right

26

The test setup contains both a UR10 by Universal Robots and a robot by Franka Emika. The UR10 is a
6-DoF robot. The Franka Emika robot is a 7-DoF robot capable of impedance control. A GSO2 gripper by
Smart Robotics will be attached to the end effector of each robot. A suction cup can be attached to the
gripper. The most commonly used suction cup by Smart Robotics is the FLI70 with a foam lip by Piabﬂ
The setups will both support blow-off to gain control over the release phase when tossing an item. In
Figure[15, one can see a schematic of the test setup.

40 cm 260 cm

200 cm
UR10 Panda

* Height: 0 Heigth: 10-15 cm”

12 cm

Figure 15: A schematic of the test setup, where the table is shown with the color ocher and grey is the
conveyor belt.

Also, an OptiTrack system is present to track the items that are tossed, such that its position can be
monitored during flight for debugging purposes. In order to use this OptiTrack system, items have to be
equipped with M3 stickers, an example of an item equipped with M3 stickers for the OptiTrack system
can be seen in Figure[16]

Figure 16: Example of item equipped with M3 OptiTrack markers.

To evaluate the performance of tossing on a traysorter, a traysorter is placed on top of the belt. This is
illustrated in Figure[17, The crossorter infeed scenario will be mimicked by tossing items on a conveyor
belt moving at a speed of 1.5m/s. The conveyor-box model is also optimized for a box landing on a
conveyor belt.

7|h1:tp ://www.pi-vacuum. com/pdf/Suction’20cup%20piGrip_GB. pdf‘

27

http://www.pi-vacuum.com/pdf/Suction%20cup%20piGrip_GB.pdf

4.4 Tossing test results

In this section, the tossing test results will be discussed. All tests were repeated 20 times to find the
average values for the KPIs, where the results were consistent. After running the planner to find arelease
pose, a toss was found which is shown in the following images, the same toss was used for the traysorter
scenario as well as the cross sorter scenario as described in Section[2l To mimic the crossorter infeed
scenario, tossing is done on conveyor belt moving with a speed of 1.5m /s as described in TabIe the
toss can be seen in Figure[21in Appendix|A]

(c) Dynamical system, moving towards toss.

X |.

lace apsinat

[
(e) Item landed in its rest pose. (f) Robot moving back to new pick.

Figure 17: The Franka Emika robot, tossing items in the traysorter in various steps.

28

In the table below, one can find the results of the benchmark done for the traysorter scenario:

Benchmark results for traysorter scenario

Toss Place
Average cycle time 6.87 s 7.64 s
Average pick and place time 2.33s 3.27 s
Accuracy 100% 100%
Failures 0] 0]
Barcode up 100% 100%

The average pick and place time is 2.33 seconds for tossing while it is 3.27 seconds for placing. The
average cycle time is 6.87 seconds for tossing and 7.64 seconds for placing an item. It is important to
note that the throughput of an item handling application is determined by the number of unsuccessful
places, errors, but most importantly the average cycle time. In this case the picking motion takes up a
relatively large part of the total cycle time as it has not been fully optimized. Still a speed up of 10.1% in
the total cycle time is realized, as can be seen in Figure[18] Looking just at the pick and place time, the
tossing algorithm is however actually 28.7% faster.

Cycle time for placing

Place to Pick Pick to Place

Cycle time for tossing

A
v

Toss to Pick Pick to Toss 10%

00s 6.87s 7.64s
Figure 18: Timeline comparison of tossing and picking motion. lllustrating the 10% performance gain.

For both tossing and placing, all items successfully landed in the traysorter, resulting in 100% accuracy
for both cases. No errors caused by the tossing motions occurred during the experiments. In all cases
when the item was picked with the barcode up the resulting toss and place also resulted in the item
landing with the barcode up.

29

Benchmark results for crossorter infeed scenario (tossing on a conveyor belt)

TOSS Place
Average cycle time 6.87 s 7.64 s
Average pick and place time 2.33s 3.27 s
Position accuracy 100% 100%
Orientation accuracy 0% 70%
Failures 0] 0
Barcode not down 100% 100%

For the crossorter infeed scenario (tossing on a conveyor belt), the same optimized toss and place were
used as in the traysorter scenario (with the robot making the same motions), which results in the same
average cycle times and average pick and place times as the traysorter scenario. In the infeed scenario,
the aim is to place items on a moving conveyor belt at the same consistent angle. When tossing, all
items always landed on the conveyor belt (and also never tumbled off the the conveyor belt), this was
also true while placing items. However, in the tossing scenario, the items always landed or tumbled such
that it landed in rest pose with a rotation error bigger than 5°. When placing the item, the rotation error
was bigger than 5° 30% of the time, which makes both scenarios unusable for the crossorter infeed sce-
nario without external applications to correct the angle of the box. However, for a bin-to-belt scenario,
where the rotation is arbitrary, the tossing scenario is valuable as it realizes a speed up compared to
placing. For the crossorter infeed scenario the item should not land with the barcode down. All tosses
and places resulted in a rest pose of the item where the barcode was not down. On two occasions the
item tumbled on its side, but still not with the barcode down.

A comparison was made between simulation and real-world experiments to see if differences occur. By
using markers and the optitrack system described in Section [4.3|the box can be tracked inflight and its
position tracked in x,y, and z. In Figure the comparison of simulation (blue line) and real world (red
line) for x, y, and z is shown

30

x-position

05 Real
Simulation
Target window
E T
c
.2
2
8-05 - \
R ! ! ! ! ! I
4 4.5 5 5.5 6 6.5 7
time [s]
06 y-position
Real
i -)
0.5 Simulation —
Target window
.04 |-
E
_S 0.3
.‘g‘
802 =
0.1
0 | ! ! I I I
4 4.5 5 5.5 6 6.5 7
time [s]
02 z-position
Real
Simulation
0.1 =
E
s o
:‘%
o
a
-0.1
02 ! | ! ! ! I
4 4.5 5 5.5 6 6.5 7
time [s]

Figure 19: The x,y,z positions of the box over time. Both of a real (red) toss, captured by optitrack and
that of simulation (blue) in the AGX environment. The target window (black) is also shown.

As can be seen, there are some slight differences between simulation and real world, this could be
explained by fact that in the simulation the suction-cup is modeled as rigid while in the real world the
suction cup is compressed while holding a box. It is expected to be improved by using the box-suction
cup holding model as well as the suction cup release dynamics model described in Section and
that were not yet integrated for the benchmark tests.

4.5 Sensitivity analysis

To get an insight into the needed accuracy of the parameter identification, a rough sensitivity analysis is
done. This is done by executing the same tossing motion but with slight variations in the properties of
the box and picking locations. For these tosses only the accuracy is taken into account as the cycle time
and pick and place time vary little. Each of the variations is tossed 5 times. The variations as well as their
success rate has shown in Appendix The properties of each box can be found in the item archiv

4.6 Using the UR10

To show that the tossing framework developed within the I.AM. project can be easily reused on other
robots, the toss inside a traysorter has also been demonstrated for the UR10. This demonstration is
illustrated in Figure

(e) Item landed in its rest pose. (f) Robot moving back to new pick.

Figure 20: The UR10, tossing items in the traysorter in various steps.

®http://impact-aware-robotics-database.tue.nl/objects

32

http://impact-aware-robotics-database.tue.nl/objects

A full benchmark with the UR10 has not been done, however, when doing testing with the UR10 the
performance was similar compared to the benchmark done for the Franka Emika robot.

4.7 Evaluation

In conclusion, the benchmark results show the potential of the I.AM. tossing scenario on a experimental
setup that was build to mimic real setups existing in the current industry, especially for the traysorter
scenario and a bin-to-belt system. For the crossorter infeed application, the angle of the rest pose of the
items is not consistent enough to be already be employed in real applications. At the same time, this is
to be expected because the developed planner does not consider such a quantity and a clear strategy
for improvement is available.

The sensitivity analysis shows that item parameters do not have to be estimated perfectly in order to
toss accurately within a desired window, nor picked up with millimiter accuracy. The results show that by
tossing items a 10% decrease in cycle time can be achieved when comparing on the same experimental
setup. As mentioned, the tossing scenario is not yet ready in its current state to be used in the industry.
This is also because in the current tossing algorithm, the item parameters are assumed to be known
such that toss planning optimization can be done offline. In the industry, thousands of different items
are used and the inertia, stiffness, and geometry of the item to be handled is not known a priori. It
is therefore required, in the near future, to develop fast online parameter identification and tossing
optimization. For inertial parameter identification, the first steps has been already taken as described in
this deliverable and related publications.

33

5 Conclusion

This deliverable described the implementation details of I.AM. tossing technology on UR10 and Franka
Emika robots, including testing and benchmarking results of dynamic (non-zero speed, and object-and-
environment aware) tossing in comparison with standard (almost zero-speed, object-and-environment
unaware) placing. Second, the deliverable provides an overview of the potential value of impact-aware
manipulation technology for specific existing applications, as provided by industrial partners Vander-
lande and Smart Robotics. These applications are the traysorter and (cross-sorter) infeed applications.
Furthermore, the components that have been developed during the I.AM. project, which are deemed
crucial for accurate tossing, have been explained. An architecture was made to make sure that separate
developed components can be integrated together to perform accurate tossing. Models were developed
to predict behaviour of an item when it is held by a suction cup, as well as the release dynamics of said
suction cup. Also, the impact and the friction dynamics between the box and the conveyor belt have
been detailed. In order to use these models, and make a prediction on the behaviour of an item when it
is being tossed, its properties must be known. Therefore, a payload identification method was explored
to determine the objects inertial parameters online. A planner was developed that can compute a re-
lease configuration, given a target rest orientation of an item. In order to reach the desired end-effector
release configuration, a controller was developed that plans and executes a non-linear point-to-point
motion in joint space, where the controller is constrained by the robot dynamics and its mechanical and
electrical hardware features. The controller is a DS-based mc_rtc controller with AGX dynamics simula-
tion for tossing the object. Using the models, a simulation environment of the tossing scenario has been
created for validation and development of control algorithms.

The box-conveyor models, the planner, and the controller, and the simulation environment, have been
integrated for real-world testing. Payload estimation could not be fully integrated and items with known
parameters were used to perform tossing. Tossing has only been done with carton boxes, which are how-
ever extremely represantive: according to Vanderlande, 80% of items that are handled in their systems
in the applications mentioned above are boxes.

A test setup consisting of a Franka Emika robot and a UR10 were used for real-world bench marking
of the I1.AM. tossing technology. Key performance indicators have been identified for a performance
comparison between tossing and picking-and-placing. A pick-and-place algorithm using the same setup
with the same control framework has been made for a fair comparison. A benchmark was done show-
ing a 10% speed up in cycle-time while still being accurate enough for industrial applications such as the
traysorter and bin-to-belt systems. For the infeed scenario the tossing was not able to throw the box at
a consistent orientation. A sensitivity analysis was done to check whether the tossing algorithm is still
accurate when parameters such as the pick position, item dimensions, and item weight deviate. The
sensitivity analysis shows that tossing is still accurate with deviating parameters. The tossing scenario
is, however, not yet ready in its current state to be used in the industry. This is because in the current
tossing algorithm, the item parameters are assumed to be known such that optimization for a toss can
be done offline. In the industry, the item variety is large and it is most often not known what item is
being handled next. Therefore, parameter identification and tossing optimization have to be done on-
line. However, the report shows that tossing can decrease the cycle time of robotic systems in logistics
by 10%, showing the potential impact it can have on the current logistics industry. The LAM. partners
are committed to address at best these missing components during the remaining project time and to
set up other join initiatives for addressing the remaining aspects after the project’s end.

34

6 REFERENCES

[1] M. L.S. Lubbers, J. van Voorst, M. J. Jongeneel, and A. Saccon, “Learning Suction Cup Dynamics from
Motion Capture: Accurate Prediction of an Object’s Vertical Motion during Release,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2022), October 2022, pp. -.

[2] M. J. Jongeneel, L. Poort, N. van de Wouw, and A. Saccon, “Validating Rigid-Body Dynamics
Simulators on Real-World Data for Robotic Tossing Applications,” Preprint on HAL, Dec. 2022.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-3903526

[3] A.Kurdas, M. Hamad, J. Vorndamme, N. Mansfeld, S. Abdolshah, and S. Haddadin, “Online payload
identification for tactile robots using the momentum observer,” in 2022 International Conference on
Robotics and Automation (ICRA). 1EEE, 2022, pp. 5953-5959.

[4] S.S. M. Salehian, M. Khoramshabhi, and A. Billard, “A dynamical system approach for softly catching
a flying object: Theory and experiment,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462-471,
2016.

[5] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic programming for multirobot
and task-space force control,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 64-77, 2019.

[6] M. B. Bombile and A. Billard, “Dual-arm control for coordinated fast grabbing and tossing of an
object: Proposing a new approach,” IEEE Robotics & Automation Magazine, 2022.

35

https://hal.archives-ouvertes.fr/hal-3903526

A Infeed scenario tossing

In the following figure, one can see the tossing that was performed on a moving conveyor belt to mimic
the cross-sorter infeed scenario, as described in Section 2}

7 - Bs ;
“ o -

(d) Tossing at release pose.

—— (f) Robot moving back to new pick and item moving along
(e) Item landing on conveyor belt the belt.

Figure 21: The Franka Emika robot, tossing items on a belt to mimic the cross-sorter infeed scenario in
various steps.

36

B Results of the sensitivity analysis for tossing

To get an insight of the needed accuracy of the parameter identification, a preliminary sensitivity anal-
ysis is performed. This is done by executing the same tossing motion but with slight variations in the
properties of the box and picking locations. The results of this sensitivity analysis can be seen in the
following Table|B|

Results for sensitivity analysis infeed scenario

Variation Accuracy Traysorter Position Accuracy In- | Orientation Accuracy
feed Infeed

Box 1 100% 100% 20%

Box 9 100% 100% 0%

Box 6 100% 100% 0%

Box 5, 2cm offset x axis | 100% 100% 0%

Box 5, 4cm offset x axis | 100% 100% 0%

Box 5, 6cm offset x axis | 80% 100% 20%

Box 5, 8cm offset x axis | 40% 60% 0%

Box 5, 2cm offset y axis | 100% 100% 0%

Box 5, 4cm offset y axis | 100% 80% 0%

Box 5, 2cm offset x and | 100% 100% 0%

y axis

Box 5, 4cm offset x and | 80% 100% 20%

y axis

Box 6, 2cm offset x and | 100% 80% 0%

y axis

Box 6, 4cm offset x and | 80% 80% 0%

y axis

37

	Introduction
	I.AM. project background
	Purpose of the deliverable
	Intended audience

	Business value
	Developed components for tossing
	Tossing Robot Architecture
	Dynamic Holding, Release, and Impact Models
	Box-suction cup holding
	Suction cup release dynamics
	Object-conveyor impact model parameters

	Payload estimation
	Tossing planner
	Tossing controllers
	DS-based tossing motion generation
	Robot control through QP robot control (mc_rtc)

	Simulation environment
	Simulated components
	Simulation software and models
	Simulation runtime
	Validation procedure
	Expected user experience
	Release of GLUE

	Performance testing
	Performance evaluation (KPIs)
	Test plan
	TOSS algorithm
	Place algorithm
	Metrics

	Test setup
	Tossing test results
	Sensitivity analysis
	Using the UR10
	Evaluation

	Conclusion
	REFERENCES
	Infeed scenario tossing
	Results of the sensitivity analysis for tossing

